Master thesis: Fleet-size and routing of electric commercial vehicles

Background of thesis project
With the current trends of electrification of commercial heavy vehicles, mission planning and vehicle transport optimization are becoming more important because of inherent characteristics of electric vehicles, e.g., range-anxiety. It means that there is not only the objective on fuel consumption reduction or shortest distance, but also the existence of complicating constraints on the vehicle range, and the consideration of additional costs caused by visits to the charging stations, including waiting times, and additional driver wages. Therefore, the planning of electric vehicles’ missions plays a larger role and is more complicated than the conventional vehicles.

A class of problems that can be suitable for planning the fleet mission is fleet-size and mix-vehicle routing problem (FSMVRP), which is extensively studied in the literature. A heterogeneous, or mixed, fleet refers to vehicles with different payload capacities (see [1]). In addition, this thesis aims at including vehicles with different powertrain, i.e., different battery sizes and ranges (e.g., [2]), and the fleet size being nonfixed.
Moreover, this thesis starts from a problem definition that is more general than the traditional routing problem and FSMVRP. For example, we will allow for multiple trips, i.e., a vehicle can travel on one or more cyclic routes more than once [3]; a node is allowed to be visited by the same or other vehicles more than once, i.e., split pick-ups and deliveries [4]; some of the nodes have charging stations that might or might not be visited [5]; at loading-unloading nodes, there is a constraint of the type of loading-unloading [3], so not all vehicles can visit all nodes. The demands at nodes can be pick-up or delivery or both and they may exceed vehicle capacities [6]. The transportation network and a possible solution of the optimized fleet, route, number of trips, and location charging stations is illustrated in Fig. 1.



Fig. 1, illustration of the transportation network and the optimized fleet, routes, number of trips and location of charging stations [7].



Suitable background
Of students

Description of thesis work
The purpose of this thesis can be summarized as follows.
  1. Designing an optimization model for minimizing the fleet transportation cost comprising electric energy cost and driver wage (or equivalent vehicle up-time cost) to find the best fleet size and composition and missions, i.e., routes, visited nodes, amounts of pick-ups and deliveries, visited charging stations, and number of trips to meet the network daily demand. The number of vehicles visiting a node, or a charging station is limited. For calculating energy consumption, a given on-road dynamic vehicle model shall be used considering road topography, vehicle powertrain and vehicle starts and stops.
  2. Suggesting classical optimization solution methods, such as Benders or column generation reformulations, to decompose and solve the extended FSMVRP. The suggested methods need to be tested on a benchmark problem with a low number of nodes and vehicle types, in order to be solved within a reasonable computation time.

See the list of bibliography for related articles. The work will be carried out at Volvo Group Trucks Technology, Sweden. The thesis is recommended for one or two students with a strong background in mathematics and mathematical optimization with good programming skills. Prior experience with programming in Python, control theory, and modeling/simulation is meritorious.

Thesis Level: Master and/or Bachelor

Language:

Starting date: Jan 2023- Jun 2023

Number of students: 2

Tutor
Toheed Ghandriz – Volvo GTT
tel: +46 765536649
mail: toheed.ghandriz@volvo.com

Leo Laine – Volvo GTT
tel: +46 31 323 53 11
mail: leo.laine@volvo.com


Bibliography:
[1] Koc C¸ , Bektas T, Jabali O, Laporte G (2016) Thirty years of heterogeneous vehicle routing. European Journal of Operational Research 249(1):1–21
URL http://dx.doi.org/10.1016/j.tranpol.2011.12.006

[2] Kopfer H, Vornhusen B (2017) Energy vehicle routing problem for differently sized and powered vehicles. Journal of Business Economics pp 1–29
URL http://dx.doi.org/10.1007/s11573-018-0910-z1016/j.ejor.2015.07.020

[3] T. Ghandriz, B. J. H. Jacobson, M. Islam, J. Hellgren, and L. Laine, ‘Transportation-mission-based Optimization of Heterogeneous Heavy-vehicle Fleet Including Electrified Propulsion’, Energies, vol. 14, no. 11, 2021, doi:10.3390/en14113221
URL https://www.mdpi.com/1996-1073/14/11/3221

[4] Tavakkoli-Moghaddam R, Safaei N, Kah M, Rabbani M (2007) A new capacitated vehicle routing problem with split service for minimizing fleet cost by simulated annealing. Journal of the Franklin Institute 344(5):406–425
URL http://dx.doi.org/10.1016/j.jfranklin.2005.12.002

[5] Arslan O, Kara¸san OE (2016) A Benders decomposition approach for the charging station location problem with plug-in hybrid electric vehicles. Transportation Research Part B: Methodological 93:670–695
URL http://dx.doi.org/10.1016/j.trb.2016.09.001

[6] Teodorovic D, Krcmar-Nozic E, Pavkovic G (1995) The mixed fleet stochastic vehicle routing problem. Transportation Planning and Technology 19(1):31–43,
URL http://dx.doi.org/10.1080/03081069508717556
[7] Ghandriz, Toheed. Transportation Mission-Based Optimization of Heavy Combination Road Vehicles and Distributed Propulsion, Including Predictive Energy and Motion Control. PhD thesis Chalmers Tekniska Högskola (Sweden), 2020.
URL https://research.chalmers.se/en/publication/520358


We value your data privacy and therefore do not accept applications via mail.


Who we are and what we believe in
Our focus on Inclusion, Diversity, and Equity allows each of us the opportunity to bring our full authentic self to work and thrive by providing a safe and supportive environment, free of harassment and discrimination. We are committed to removing the barriers to entry, which is why we ask that even if you feel you may not meet every qualification on the job description, please apply and let us decide.


Applying to this job offers you the opportunity to join Volvo Group. Every day, across the globe, our trucks, buses, engines, construction equipment, financial services, and solutions make modern life possible. We are almost 100,000 people empowered to shape the future landscape of efficient, safe and sustainable transport solutions. Fulfilling our mission creates countless career opportunities for talents with sharp minds and passion across the group’s leading brands and entities.


Group Trucks Technology are seeking talents to help design sustainable transportation solutions for the future. As part of our team, you’ll help us by engineering exciting next-gen technologies and contribute to projects that determine new, sustainable solutions. Bring your love of developing systems, working collaboratively, and your advanced skills to a place where you can make an impact. Join our design shift that leaves society in good shape for the next generation.

Queremos conhecê-lo

PROCESSO DE CANDIDATURA

Aplicar

Um e-mail de confirmação será enviado assim que a sua inscrição for submetida. Depois disso, ainda será possível editar seu perfil fazendo o login em sua conta. A equipe de contratação analisará sua inscrição e as pessoas selecionadas serão contatadas com informações sobre as etapas seguintes.

Testimonials

Cargos semelhantes

Product Safety and Compliance Engineer at Volvo Energy Technology Göteborg, Sweden Postado: 
Quality Manager to Electromobility at Volvo Group Technology Göteborg, Sweden Postado: 
Design Director Volvo Construction Equipment Technology Göteborg, Sweden Postado: